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Abstract. The MSSM with a light right-handed stop and supersymmetric models with a singlet whose vev
is comparable to that of the SU(2)W Higgs allow for a strongly first-order electroweak phase transition
even for a mass of the lightest Higgs around 100 GeV. After a short review of the standard model situation
we discuss these supersymmetric models. We also compare perturbative calculations based on the
dimensionally reduced 3-dimensional action with lattice results and present an analytic procedure based
on an analogue of the stochastic vacuum model of QCD to estimate the nonperturbative contributions.

1 Introduction

The unification of fundamental interactions at high ener-
gies is usually discussed in the framework of the renormal-
ization group based on perturbation theory for tempera-
ture T = 0 quantum field theory. However, according to
our present understanding, high energies much above the
reach of today’s accelerators were realized in the hot early
universe: during its expansion it cooled down and – like in
material physics (liquid–vapor, alloys, superconductors...)
underwent phase transitions. The latter depend crucially
on the particle content and the interactions of the underly-
ing theory and on the time scale of the expanding universe.
Thus the study of possible relics of such phase transitions
might reveal interesting news about the basic theory. In
general, these are genuinely nonperturbative phenomena.
Therefore one needs methods to treat them appropriately.

The electroweak standard model (SM) is so successful
because it allows for very accurate perturbative calcula-
tions of high energy processes due to the small weak cou-
pling gW in the Higgs ground state and because these
agree beautifully with experiments. Still it is not con-
sidered as a fundamental theory above the 1 TeV scale
because it is not stable against impact from GUT-scale
physics. Thus any hint towards a modification of the elec-
troweak standard model is highly welcome to theorists.

We will first review shortly the well understood phase
transition (PT) in the SM in chapter 2. It has all the
necessary ingredients postulated by Sakharov to possi-
bly produce [1,2] the baryon asymmetry of the universe(
(nB − nB̄)/nγ ∼ 10−10

)
, and this is the main promise of

a standard model PT. However, it turned out to be not
fulfilled. Thus in the discussion of baryogenesis one might
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have to return to the old (or new) out-of-equilibrium de-
cay scenarios [3] of very heavy particles contained in GU
models. However, grand unification should be dealt with
in close relation to inflation: inflation is the well-known so-
lution to some problems in standard cosmology and also
provides a very successful explanation of primordial den-
sity fluctuations in the early universe. Since all particle
densities are diluted exponentially during the inflationary
period, the GUT particles supposed to create some baryon
asymmetry have to be produced in the pre-reheating pe-
riod after inflation or in a separate GUT phase transition
after inflation. The latter is very problematic because the
reheating temperature after inflation is favorably not in
the range of GUT energies, in particular in SUSY mod-
els. Furthermore, the GU theory has to be B–L violating,
otherwise B and L are washed out by the B–L conserv-
ing (hot) sphaleron transitions during the thermodynamic
equilibrium period before the electroweak PT (Fig. 1).

Chapter 3 contains some remarks about a (semi)ana-
lytic treatment of nonperturbative effects in a first-order
PT based on recent work of the authors. The most impor-
tant point is an instability of the gauge field F 2 = 0 vac-
uum of the hot electroweak theory for small Higgs vevs.
This leads to nonperturbative modifications of the elec-
troweak potential. In chapter 4 and 5 we discuss variants
of the SM: in chapter 4 the minimal supersymmetric stan-
dard model (MSSM) with a “light” stopR superpartner of
the right-handed top. This will allow a strongly first-order
phase transition even at Higgs masses as large as 100 GeV.
In chapter 5 we consider a nonminimal (next to minimal?)
supersymmetric model (NMSSM) with a singlet superfield
S which also obtains a vev < S > of the order of the Higgs
vev. Different from the standard situation this model leads
to a first-order phase transition already at the tree level.
Again Higgs masses of 100 GeV are compatible with a
strong PT in a broad range of parameters.
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Fig. 1.

2 Electroweak phase transition
in the standard model

The order and the strength of the electroweak PT can
be discussed with the (thermal equilibrium) effective po-
tential Veff (ϕ2, T ) (free energy) depending on the Higgs
background field ϕ(< φ >=

(
ϕ
0

)
/
√

2) and the tempera-
ture. A simple 1-gauge field loop calculation in thermal
field theory results in a positive (Debye) mass contribu-
tion to the Higgs mass proportional to T . This reduces
the Higgs instability and predicts a phase transition at
high temperatures [4]. The Matsubara zero modes (with-
out time dependence) in the same 1-loop calculation pro-
duce a term ∼ −T (ϕ2)3/2 in the potential which leads to
two degenerate minima at some critical temperature Tc

labeled by “symmetric” (ϕ = 0) and “Higgs” (ϕMin 6= 0).
This would naively imply a first-order PT [5]. However,
a concise analysis of the effective potential reveals that
this is a very preliminary result because one has to treat
the infrared (IR) behavior for ϕ → 0 properly. In high-
temperature gauge theory the coupling g2

W T has a dimen-
sion, and the dimensionless ratio g2

W /mIR is not small if
the scale mIR ∼ ϕ becomes small. Furthermore it turns
out that 2-loop contributions are quantitatively very im-
portant. A clean way [7,8] to deal with such a situation is
a stepwise procedure (“dimensional reduction”): Integrate
out
1) n 6= 0 Matsubara modes with p0n

= 2πnT (including
all fermions with n = 1/2, 3/2, ...).
2) n = 0 modes of longitudinal gauge fields A0 which have
obtained a Debye mass mD ∼ gW T in the first step.

Here “integrate out” is understood in the sense of a
matching procedure, matching a set of static 4-dimensional
amplitudes containing the above modes in the loops to a
3-dimensional truncated Lagrangian [9] for the Higgs and
transversal gauge zero modes:

L3−dim
eff =

1
4
(F a

ik)2 + (Diφ3)+(Diφ3)

+m2
3(T )φ+

3 φ3 + λ3(T )(φ+
3 φ3)2 . (2.1)

L3−dim
eff contains a 3-dimensional gauge coupling g2

3 =
g2

W T (1 + ...), a T -dependent Higgs mass m2
3(T ) and a

coupling λ3(T ) = λ4−dim
T T between 3-dimensional Higgs

fields (canonical dimension 1/2). Neglection of higher
terms in (2.1) (e.g. ∼ (φ+

3 φ3)3) introduces a (few percent)
error of O(g3

W ) for ϕ3 < 2π
√

T . It is important to note
that steps 1 and 2 above can be performed in (two-loop)
perturbation theory, whereas the zero-mode Lagrangian

Fig. 2. (from [15]). The perturbatively calculated interface
tension σ (including Z-factor effect and gauge variations) vs. x
compared to lattice data from [10] (squares), [16] (triangles)
and [17] (circles)

(2.1) contains all the IR problems for ϕ → 0. As it stands
L3−dim

eff contains a potential which still naively describes
a second-order PT at Tc with m2

3(Tc) = 0. However, it
is just the tree Lagrangian of the 3-dimensional theory.
Calculating naively again the 1-loop action in this theory
one reproduces the −T (g2

W ϕ2)3/2 term mentioned above
(now in the form −(g2

3ϕ2
3)

3/2) leading to a first-order PT.
However, we expect important nonperturbative IR effects
if the perturbative 3-dimensional potential competes with
a nonperturbative part at ϕ3 = 0 which is of order (g2

3)3
for dimensional reasons. Rescaling by powers of g2

3 – the
unique scale in the problem – we have the dimensionless
couplings

y =
m2

3(T )
(g2

3)2
, x =

λ3(T )
g2
3

(
∼ λ4−dim

T

g2
W

)
(2.2)

where y is related to (T −Tc) and x is the parameter which
determines the critical behavior of (2.1).

The most secure way to deal with (2.1) is to use it in
lattice calculations [10,11] to determine the critical tem-
perature Tc and the interface tension and latent heat – if
we have a first-order PT. An alternative treatment would
be in the framework of Wilsonian renormalization [12].
L3−dim

eff of (2.1) is an x, y-dependent superrenormalizable
3-dimensional Lagrangian with just one scale g2

3 and with-
out fermions and thus can be handled very safely in the
lattice approach. The results of such lattice calculations
[10,11] are:
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Fig. 3. 1-loop graph contributing to the potential V (ϕ2,
< g2

3F 2 >)

(i) there is a first-order PT for x <∼ 0.11; there is a second-
order PT at the endpoint [14] and above x = 0.11 one
has a crossover – no PT anymore!

(ii) v(Tc)/Tc = ϕmin(Tc)/Tc >∼ 1 for x <∼ 0.04
(iii) Comparing the 2-loop perturbative expressions ob-

tained from (2.1) with lattice results, there are de-
viations for x >∼ 0.05 in particular for the interface
tension (Fig. 2).

To protect a previously generated baryon asymmetry
in a universe with B − L = 0 from erasure by sphaleron
transitions ∼ exp(−Av(T )/T ) in a thermodynamic equi-
librium period inside the Higgs phase one needs v(Tc)/
Tc >∼ 1. With x = (1/8)m2

H/m2
W + cPosm

4
t /m4

W where
the second term alone is > 0.04 for the observed top mass
mt, this can never be achieved in the SM, independent
of the Higgs mass. Together with its CP-violating effects
being smaller than needed for an asymmetry production,
this prevents the SM to explain the baryon asymmetry of
the universe.

3 Nonperturbative effects in the
three-dimensional electroweak potential

Lattice results give a clear picture for the phase diagram in
the case of Lagrangian (2.1). However, for some questions
– e.g. sphaleron action, shape and action of the critical
bubble – an explicit effective (coarse-grained) action still
would be useful. It is also very important to have some
(semi)analytic picture which tells us where one can trust
perturbation theory and where not. This will be particu-
larly true in the case of more complicated effective actions
where lattice results may not be available. Thus we shortly
discuss such a model [13].

In the hot symmetric phase with background ϕ = 0
the Lagrangian (2.1) describes a 3-dimensional QCD-type
theory with scalar Higgs “quarks”. Lattice calculations
[11] show that indeed in this phase static “quarks” ex-
perience a constant string tension which furthermore is
approximately equal to that of pure SU(2)-Yang-Mills the-
ory. This hints to a nonperturbative dynamics dominated
by “W-gluons”. Also a spectrum of correlation masses of
gauge-invariant HH̄ bound states and of W -glueballs has
been calculated on the lattice [18]. The former is compat-
ible with a linearly rising potential in a relativistic bound

Fig. 4. Sketch of the potential V (ϕ2, < g2
3F 2 >) in F 2-

direction for two different values of ϕ2

state model [19] (like that of Simonov in 4-dimensional
QCD [20]). There is only a small mixing with the W-
glueballs [18] in agreement with the suggestion above that
we have pure “W-gluon”dynamics.

An interesting phenomenological description of the
QCD vacuum is the “stochastic vacuum model” of Dosch
and Simonov [21,22]. Its main virtue is that it leads very
naturally to the area law of confinement. We have applied
it to the 3-dimensional theory (2.1) with an SU(2)W gauge
group. Its main ingredient is a correlated gauge field back-
ground with a purely Gaussian correlation

�g2
3F a

iκ(x′)F a
iκ(x)�=< g2

3F 2 > D

(
(x − x′)2

a2

)
. (3.1)

This correlator is already simplified by choice of a coordi-
nate gauge and by averaging over the tensor structure. <
g2
3F 2 > is the normalization by the usual local gauge field

condensate and D (D(0) = 1) is a form factor containing
the correlation length a. The correlator has been tested
in 3-dimensional lattice calculations [23] and the correla-
tion length was obtained as a ∼ 1/0.73g2

3 ∼ 2/mglueball.
In [13] we presented strong indications that the < g2

3F 2 >
ground state is unstable (similar to the Savvidy instability
of QCD) for small Higgs vevs. Thus one obtains nonper-
turbative effects by a fluctuating gauge field background
of type (3.1).

One can estimate the effect of such a background on
the W-boson (and ghost) loop leading to the 1-loop effec-
tive potential V (ϕ2, < g2

3F 2 >) (Fig. 3). We found [13] two
contributions to a momentum-dependent effective (“mag-
netic”) mass:
(i) an IR regulator mass m2

conf (p2, ϕ2, < g2
3F 2 >) of gauge

bosons and ghosts due to the string tension (area law)
which cures the IR problems of perturbation theory.
(ii) a negative effective (mass)2 for the W-bosons −S̃F (p2,
ϕ2, < g2

3F 2 >) due to spin-spin forces which becomes im-
portant for larger p2 (“paramagnetism”) and does not
spoil the nice IR properties of m2

conf . If we introduce
these masses in the 1-loop action (gauge boson loop) it
has roughly the form

V (ϕ2, < g2
3F 2 >)
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Fig. 5a,b. (from [13]). m2
conf(p

2, m2) and S̃F (p2, m2) in units of (g2
3)2 plotted a for m2 = 0 and b p2 = 0

Fig. 6a,b. (from [13]). a V g
1 (ϕ), V H

1 (ϕ) compared to the perturbative ϕ3
g term (in units of (g2

3)3). b Fading away of the
first-order phase transition with increasing x = λ

g2
3
, where x1 = 0.06, x2 = 0.08 and x3 = 0.11

∼ ...

∫
d3p

(2π)3
log

[
p2 +

1
4
g2
3ϕ2 + m2

conf (p2, ϕ2, < g2
3F 2 >)

−S̃F (p2, ϕ2, < g2
3F 2 >)

]
. (3.2)

(This has to be corrected [13] for combinatorics and also
has to be renormalized). Both masses depend on < g2

3F 2 >.
Expanding (3.2) in first-order in < g2

3F 2 > the spin-spin
force in −S̃F produces the well-known negative F 2-term
destabilizing the F 2 = 0 vacuum. Adding the tree 1

4F 2 we
can obtain an effective potential sketched in Fig. 4 stabi-
lized at some value F 2 6= 0 by confinement forces. This is
a 1-loop calculation and the masses m2

conf and −S̃F are
determined only roughly (in lack of lattice data support).
Thus we have only a qualitative picture. To proceed, we
fixed < g2

3F 2 > at the minimum by a relation to the lattice
string tension.

Fig. 5 shows the qualitative form of m2
conf (p2, ϕ2) and

of S̃F (p2, ϕ2) and Fig. 6a the modified “ϕ3”-term cor-

responding to (3.2). Figure 6b presents the new 1-loop
potential at the critical temperature at various x-values,
and one can see the first-order PT fading away. One can
also evaluate the interface tension (table) and determine
roughly the crossover point by postulating that the effec-
tive ϕ2 and ϕ4 vanish at this (conformal) point with a
second-order PT.

x σ σperturbative

0.06 0.016 0.013
0.08 0.004 0.007
0.11 0 0.004

We should stress again that this picture of nonpertur-
bative effects is not really quantitative, in particular be-
cause 2-loop calculations in a correlated gauge-field back-
ground are (too) difficult. Still we might get an indication
in which direction nonperturbative contributions go.
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Fig. 7. 1-loop stop contribution to the effective potential

4 The MSSM with a “light” stop

Searching for modifications of the electroweak theory in
order to obtain a strongly first-order PT, one faces the by
now sufficiently known situation that the success of the
standard model is both blessing and burden. We do not
have experimental hints which way to go. Supersymmetric
theories have the well-known theoretical advantages. From
a practical point of view all one needs for a strongly first-
order PT is the strengthening of the “ϕ3”-term in the
effective potential due to bosonic exchange in the loop.
Thus one needs further bosons with a strong coupling to
the Higgs. SUSY models have a host of new bosons in the
superpartner sector. In particular the s-top particles have
a particularly strong Yukawa coupling ht if the Higgs vev
< v2 > of the Higgs coupling to the top (mtop = ht <
v2 >) is not very large, i.e. if tanβ = v2/v1 is not large.
The superpartner of the right-handed top, the stopR, does
not have SU(2)W interactions, and thus is particularly
flexible in its allowed mass (no ρ-parameter problem). As
proposed in [24,25], its exchange (Fig. 7) can enhance the
PT significantly if its mass m2

3 in the symmetric phase
(including T 2-plasma mass) is small:

m2
3 = m2

0 + cT 2 (4.1)

where m2
0 is the SUSY-breaking scalar mass of the stopR.

The T = 0 mass of the stopR is

m2
t̃ = m2

0 + m2
t (4.2)

and is not much larger than the top mass for small positive
m2

0. There might be a nonuniversal SUSY mass breaking
at the GUT scale necessary for very small m2

0 though the
stop mass2 is naturally lowered by renormalization flow.

If the stopR and one heavy combination of Higgses is
integrated out, one is led again to a Lagrangian of the form
(2.1), but now with an x = λ3/g2

3 value much smaller than
in the SM (being bosonic the stop contributes opposite to
the top!) allowing for mH <∼ 75 GeV for a strongly first-
order PT with v(Tc)/Tc ≥ 1 [27]-[30].

One can also ask [24] for stopR masses smaller than
the top mass taking m2

0 = −m̃2
0 negative in (4.1), (4.2).

The stopR than should not be fully (also zero modes) in-
tegrated out, but kept in the effective 3-dimensional zero
mode action together with the light Higgs fields. If one
assumes that the CP-odd Higgs A0 meson surviving spon-
taneous breaking is rather heavy ( >∼ 300 GeV), there is

Fig. 8. Latent heat at Tc in dependence of mass parameter
m̃U calculated on the lattice in [33] compared to the analytic
results of [31]

a heavy Higgs sector to be integrated out, and just as
above one Higgs field remains. We thus have to consider
a Lagrangian [28]

L3−dim
eff = L3−dim

eff (Higgs)

+
1
4
GA

ijG
A
ij + (Ds

i U)+(Ds
i U) + m2

U3
U+U

+λU3(U
+U)2 + γ3(φ+

3 φ3)(U+U) . (4.3)

The T -dependent parameters are obtained by integrating
out all non-zero modes and all heavy particles like in (2.1),
which is the first part of the Lagrangian (4.3). Thus one
has to specify the field content and the SUSY-breaking
parameters of the model. The simplest choice is the min-
imal supersymmetric standard model (MSSM) [26] with-
out universality for the top scalar SUSY-breaking masses.
The partner of the left-handed top with a SUSY-breaking
mass m2

Q should be heavy in order not to contribute too
much to ∆ρ.

Two-loop calculations with (4.3) have shown that one
can indeed obtain v(Tc)/Tc >∼ 1 even for lightest Higgs
masses as big as 105 GeV [31]. The parameter space is
enlarged [32] if one allows for stopR-stopL mixing with a
parameter Ãt = At +µ... . (Both parameters µ and At are
important in the discussion of CP-violations in the wall.)
[32] uses an improved 4-dimensional one-loop effective po-
tential plus an important 2-loop part at high temperatures
and agrees well with the special case considered in [31].

For large enough negative m2
U = −m̃2

U one even ob-
tains [31,32] a two-stage phase transition with an interme-
diate stop condensate < U+U >. This is only acceptable
if the transition rate which is rapidly decreasing with in-
creasing m̃2

U still allows to return from the stop phase to
the Higgs phase. In the former phase one has a situation
analogous to the Higgs phase, in particular massive SU(3)
gauge bosons.
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Fig. 9. Three dimensional latent heat in dependence of x cal-
culated from the potential (3.2) (full line) compared to the
result of ordinary 1-loop perturbation theory (dashed-dotted
line)

Recent lattice calculations confirm the perturbative re-
sults surprisingly well [33] (Fig. 8) – though there are also
significant deviations. In particular the PT turned out to
be more strongly first order – the latent heat and v(Tc)/Tc

are larger than in the perturbative result. We can under-
stand this effect qualitatively with our model for nonper-
turbative contributions: The effective x-value in the Higgs
part of (4.3) is much smaller than in the standard model
and for these values (Fig. 9) the latent heat and v(Tc)/Tc

are both increased compared to pure perturbation theory.
The important additional graphs coming from Lagrangian
(4.3) mostly involve SU(3) gluons and the stopR both of
which do not have SU(2)W interaction, and hence also no
nonperturbative effects on this scale1.

5 NMSSM with a strongly first-order phase
transition

In the effective electroweak potential near the critical tem-
perature a term of type −ϕ3 triggers a first-order PT. Up
to now we discussed the generation of such terms in 1-loop
order of perturbation theory. There is also the possibility
to obtain it already on the tree level. An SU(2)W -invariant
third-order polynomial term in the potential cannot just
contain the Higgs(es). Thus one has to enlarge the field
content of the SM and also of the MSSM in the case of
a supersymmetric theory. The simplest extension of the
MSSM, the “next to minimal model” NMSSM [34,35],
contains a further superfield S, which is a gauge singlet,
in an additional piece of the superpotential

gS = λSH1H2 − k

3
S3. (5.1)

1 This remark may be used to consider a hybrid model com-
bined out of lattice and perturbative calculations

The soft SUSY breaking term

V S = AλλSH1H2 − k

3
AkS3 (5.2)

has the desired “ϕ3” form [37] if S is on the same level as
the Hi. The superpotential (5.1) has the virtue to avoid
the µ-term gµ = µH1H2 with its fine-tuning problem be-
cause this term automatically arises after the singlet field
acquires a vev. However, because of its Z3 symmetry it
suffers from the well-known domain wall problem [38]. It
turns out that the NMSSM with just (5.1) and (5.2) be-
sides having the domain wall problem also is unable to
produce a phase transition in < S > and < H > simul-
taneously, which requires < S > and < H > to be of
the same order of magnitude. With a very large < S >2

one would first obtain a PT in < S > and afterwards
the ordinary MSSM PT in some Higgs field combination,
which is not what we want. We thus as in [39] choose the
superpotential3

g = gS + µH1H2 − rS. (5.3)

Different from work [44] more than a decade ago we keep
the full parameter space of the model only restricted by
universal SUSY breaking at the GUT scale. In the lat-
ter we differ from [39] where the parameters were fixed
at the electroweak scale without such a criterion. Besides
the well-known gauge couplings in the D-terms we then
have the parameters λ, k, µ, r in the superpotential and for
the SUSY breaking a universal scalar mass squared m2

0,
a common gaugino mass M0, as well as an analytic mass
term B0 for the Higgses and a universal trilinear scalar
coupling A0 corresponding to the second and third power
terms in the superpotential, respectively.

Besides the tree potential and 1-loop Coleman-
Weinberg corrections we include 1-loop plasma masses for
the Hi and S fields and the 1-loop “ϕ3” terms discussed
in previous chapters which, however, now in general are
small compared to the tree term (5.2). The most impor-
tant finite temperature contributions come from the top
quark and the gauge bosons, but in some parts of the pa-
rameter space the stops, charginos and neutralinos may
become rather light and therefore are also included in the
effective potential VT (H1, H2, S).

Having at hand the potential we are interested in, a
rather natural procedure would be as follows: (Randomly)
choose a set of the GUT scale parameters listed above.

2 It was shown in [35] that in the case of universal soft SUSY
breaking at the GUT scale the singlet vev has to be larger than
1 TeV to prevent the appearance of not observed light particles
in the spectrum. Similar results were obtained for certain non-
universal soft terms [36]

3 We are aware that removing the cosmologically problematic
Z3 symmetry after inclusion of non-renormalizable interactions
may reintroduce quadratically divergent singlet tadpoles which
can destabilize the electroweak scale [40]. But there are some
suggestions in the literature how to prevent these potentially
dangerous diagrams [41] or even use them in a constructive
way as a tool for model building [42,43]
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Then use the (1-loop) renormalization group equations
[45] to evolve the parameters down to the weak scale and
minimize the T=0 effective potential in order to study the
electroweak symmetry breaking. Of course, to reproduce
the physical Z-boson mass MZ a rescaling of all the (un-
known) dimensionful parameters is necessary. But in the
very most number of cases after this rescaling there ap-
pear some unobserved light particles in the spectrum, so
one has to try the next set of parameters and this whole
“shot-gun” procedure is very inefficient.

Instead we fix the T=0 electroweak minimum deter-
mined by MZ , tanβ = v2/v1 and < S > in addition to
the parameters λ, k, m2

0, M0,A0 while µ,r,B0 remain un-
specified. The important thing is that the latter do not
enter the 1-loop renormalization group equations for λ, k
and the soft parameters with exception of B so we can cal-
culate all parameters of the effective potential at the weak
scale except µ, r and B which we determine by applying
the minimization conditions

∂VT=0(H1, H2, S)
∂Hi

= 0 ,
∂VT=0(H1, H2, S)

∂S
= 0 .

Because of the complicated 1-loop corrections these equa-
tions cannot be solved analytically, but an iterative nu-
merical solution taking the tree level solution as starting
values is possible. Of course, whether the postulated min-
imum (MZ , tanβ, < S >) is indeed the global minimum
has to be checked explicitly and constrains the parameter
space of the model. Using this procedure we are left with
the seven parameters4

tanβ, < S >, λ, k, m2
0, M0, A0

which still contain a lot of freedom. Fortunately, not all pa-
rameters are equally important with respect to the strength
of the PT: Of most interest are the gaugino mass M0 and
the trilinear scalar coupling A0, as they determine the co-
efficients Aλ and Ak of the “ϕ3”-terms in (5.2). Therefore
we will study the plane of these parameters while keeping
the others fixed. To maximize the lightest CP-even Higgs
mass Mh tanβ should be taken large while λ should be
kept small. As stated above, a strong PT can only be ex-
pected, if < S >∼ MZ which requires k to be not too
small because of < S >∼ Ak

k . The remaining parame-
ter m2

0 only influences the masses of the additional Higgs
bosons which we have chosen heavy.

An example of a scan in the M0–A0 plane is shown in
Fig. (10) where we fixed the remaining parameters accord-
ing to the remarks before as < S >=100 GeV, tanβ=5,
λ=0.05, k =0.4 and m0=200 GeV. There are several con-
straints on the parameter space: First of all, the minimum
postulated in the elimination procedure discussed above
has to be the global minimum which leads to the lower
bound on A0 in Fig. (10). To prevent the appearance of
a chargino with mass smaller than 80 GeV the gaugino

4 Additionally, we require the top quark mass Mtop = 175
GeV which allows us to fix the top Yukawa coupling as a func-
tion of tan β. All the other Yukawa couplings are neglected
which is only justified in the regime tan β <∼ 10

Fig. 10. Scan of the M0–A0 plane where the remaining param-
eters are fixed. The full line surrounds the phenomenologically
viable part of the parameter space. The dotted lines are curves
of constant lightest Higgs mass (75 and 85 GeV). The dashed
line indicates the region where the lightest Higgs is predomi-
nantly a singlet. The dashed-dotted line separates the regions
of strong (vc/Tc >∼ 1) and weak PT

mass M0 has to be larger than 100 GeV corresponding to
the vertical line in the plot. Finally, we require the light-
est Higgs mass Mh to be larger than 65 GeV which leads
to the upper bound on A0 in Fig. (10)5. Compared with
the current LEP data on SM-like Higgs bosons this may
seem to be a rather low value but one has to keep in mind
that the lightest “Higgs” state in this model always has
some singlet component which even dominates in the re-
gion above the dashed line. Therefore the experimental
constraints on Mh are somewhat relaxed.

In order to investigate the strength of the PT we de-
termine the critical temperature Tc where there exist two
degenerate minima in VT (H1, H2, S), a broken minimum
with < Hi >6= 0 and a symmetric one with < Hi >= 06.
For the previously discussed set of parameters the results
are again summarized in Fig. (10). There the dashed-
dotted line separates the region with a weak PT from
the region where the baryon number washout criterion
vc/Tc >∼ 1 is fulfilled. One clearly sees that most of the
parameter space is indeed compatible with electroweak
baryogenesis. Interestingly enough, the region where the
Higgs mass is maximized (Mh ∼ 90 GeV) is not excluded.
Let us again stress that the situation drastically changes
if we increase the singlet vev to e. g. < S >= 300 GeV
while decreasing k in order to obtain similar values of Mh.
Then only a small range of values of A0 just above its lower
bound allows a strong PT and most of the parameter space
leads to erasure of the baryon asymmetry.

In the previous example the maximal value of the Higgs
mass is 90 GeV but one can reach much higher values.

5 Note that this also implies an upper bound on the gaugino
mass depending on the remaining parameters

6 The singlet vev is different from zero even in the symmetric
minimum
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By choosing tanβ=10 Mh=100 GeV can be obtained and
still vc/Tc >∼ 1 can be fulfilled. Increasing the singlet vev
to e. g. < S >= 250 GeV allows the even larger value
of Mh=115 GeV without violating the washout criterion.
But with larger < S > the amount of fine-tuning of A0
increases and there is the danger of metastability since
the PT requires thermal tunneling over a rather high tree
barrier.

6 Concluding remarks; baryogenesis
in the SUSY electroweak phase transition

Having found a model and a set of parameters where the
electroweak PT is strong enough to avoid sphaleron era-
sure in the Higgs phase of a previously generated baryon
asymmetry, we are just at the beginning and not at the
end of the story: One now has to develop a consistent
picture of baryogenesis [46]-[54].

First one has to derive the shape of the bubble wall of
the critical bubble [55]. The corresponding action deter-
mines the transition probability and – together with the
Hubble parameter – the degree of supercooling and the
nucleation temperature. The bubble expands and the fric-
tion generated by scattering processes at the bubble wall
determines the shape of a stationary expanding bubble
[48,56,57].

Furthermore, CP-violation in the bubble wall formed
by a spatially varying Higgs-field combination has to be
discussed [49]-[53]. Different from the SM in SUSY models
the phases of the Higgs-field couplings µ and At cannot
be defined away. CP could be broken explicitly or spon-
taneously by Higgs condensates with a phase. The latter
might only happen in some temperature interval. This is
very attractive since it relaxes dangerous upper bounds by
an experimentally allowed neutron electric dipole moment
[53] (one also needs some explicit CP-breaking in order to
remove a sign ambiguity in the spontaneous breaking).

In variants of the favorite “charge transport mecha-
nism” [54] the scattering (transmission/reflection) of the
particles in the plasma (most important are Higgsinos,
gauginos, stop) on the bubble wall generates a current of
chiral charge diffusing in the symmetric phase in front of
the expanding bubble and is transmitted into a B + L
asymmetry by the “hot” (unsuppressed) sphaleron pro-
cesses during the time before the Higgs phase bubble takes
over. The bubble wall in new calculations [58]-[62] is fa-
vored to be thick7 (i.e. bigger than the mean free path
of the scattering particles) and is moving slowly (∼ c/10,
“deflagration”). Recently it was stressed in the literature
[58,59,62] that one should not separate scattering at the
bubble wall and diffusion in the symmetric phase, but deal
with both simultaneously in the framework of quantum
Boltzmann equations. The outcome is still controversely
discussed.

Concluding we can say that the strength of the elec-
troweak phase transition in specific models like the one

7 In case of the NMSSM there may exist some parts of the
parameter space where the wall turns out to be thin

discussed here can be determined reliably using a mix of
perturbative theory and lattice work, supplemented by
a qualitative analytic picture. If the PT is predicted by
perturbative calculations to be strongly first-order, this
is not changed by nonperturbative effects. In the MSSM
with a “light” stopR and in a broad parameter range of
the NMSSM with µ 6= 0 a strongly first-order PT with
v(Tc)/Tc >∼ 1 is possible even at Higgs masses as big as
100 GeV (and even higher?).
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